Phenomenological Consideration of Protein Crystal Nucleation; the Physics and Biochemistry behind the Phenomenon
نویسندگان
چکیده
Physical and biochemical aspects of protein crystal nucleation can be distinguished in an appropriately designed experimental setting. From a physical perspective, the diminishing number of nucleation-active particles (and/or centers), and the appearance of nucleation exclusion zones, are two factors that act simultaneously and retard the initially fast heterogeneous nucleation, thus leading to a logistic time dependence of nuclei number density. Experimental data for protein crystal (and small-molecule droplet) nucleation are interpreted on this basis. Homogeneous nucleation considered from the same physical perspective reveals a difference—the nucleation exclusion zones lose significance as a nucleation decelerating factor when their overlapping starts. From that point on, a drop of overall system supersaturation becomes the sole decelerating factor. Despite the different scenarios of both heterogeneous and homogeneous nucleation, S-shaped time dependences of nuclei number densities are practically indistinguishable due to the exponential functions involved. The biochemically conditioned constraints imposed on the protein crystal nucleation are elucidated as well. They arise because of the highly inhomogeneous (patchy) protein molecule surface, which makes bond selection a requisite for protein crystal nucleation (and growth). Relatively simple experiments confirm this assumption.
منابع مشابه
Crystal nucleation in the presence of a metastable critical point
Density functional theory is applied to the study of crystal nucleation in the presence of a metastable critical point. A phenomenological model for fluids with short range interactions is developed to study the influence of critical density fluctuations on the structure of the critical nucleus and the height of the barrier to nucleation. Our results show dramatic changes in the nature of cryst...
متن کاملCrystal size distribution in metamorphic rocks: an example for the relationship between nucleation and growth rates with overstepping
Crystal size distribution (CSD) in metamorphic rocks provide fundamental information about crystal nucleation and growth rate, growth time and the degree of overstepping. CSD data for garnet, staurolite, kyanite and andalusite crystals from the aureole demonstrate that the earliest formed of these minerals, garnet, has the highest population density and the shortest growth time. The last formed...
متن کاملNumerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity
In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...
متن کاملInvestigation of Different Stages of Aluminum Fluoride Crystal Growth
Crystallization of Aluminum fluoride at atmospheric pressure has been considered. Structure, size and shape of crystals formed during the crystallization process have been investigated. By applying the direct analysis method for the existed aluminum in solution, the aluminum fluoride nucleation process has been detected as a concentration valley at the outset of crystallization process. The...
متن کاملThe Influence of Crystal Size and Material on Intercrystal Scattering and Parallax in PET Block Detectors: A Monte Carlo Study
Introduction: In this study, we utilized the MCNP4C Monte Carlo code to quantitatively evaluate the influence of crystal size and material on intercrystal scatter and parallax effects. Materials and Methods: For each of the 5 selected crystals (BGO, LSO, LYSO, LuAP, GSO), transport of 511 keV photons originating from a point source and incident on the central cry...
متن کامل